It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.
Coronavirus Update: See Coronavirus Info for updates about the UCF Libraries and the Academic Resources guide for other information about access to resources.
Covering all aspects of transport phenomena on the nano- and micro-scale, Springer’s Encyclopedia of Microfluidics and Nanofluidics includes over 750 entries in three alphabetically-arranged volumes including the most up-to-date research, insights, and applied techniques across all areas.
Because of their far-reaching consequences, truly transformative technologies always generate controversy. This encyclopedia covers the ethical, legal, policy, social, economic, and business issues raised by nanoscience.
The Encyclopedia of Nanotechnology provides a comprehensive and multi-disciplinary reference to the many fields relevant to the general field of nanotechnology. It aims to be a comprehensive and genuinely international reference work and will be aimed at graduate students, researchers, and practitioners. The Encyclopedia of Nanotechnology introduces a large number of terms, devices and processes which are related to the multi-disciplinary field of Nanotechnology.
This concise glossary is designed to provide the first answer to these and similar questions, and be a guide through the jungle of the jargon that has evolved in the busy field of carbon nanostructures. It does not provide a complete review of the nanocarbon field nor should it be mistaken for a textbook. The main intention is to provide useful information about keywords and explain basic concepts in nanocarbon science to all interested parties
Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.
Nanomedicine is clinical medicine with the application of nanobiotechnology, which is currently being used to research the pathomechanism of disease, refine molecular diagnostics, and aid in the discovery, development and delivery of drugs. In The Handbook of Nanomedicine, Prof. Kewal K. Jain distills the voluminous literature relevant to the subject into one concise, comprehensive and easy-to-use guide. Beginning with the basics, the subject is developed to potential clinical applications, many of which are still at an experimental stage.
This Handbook covers all aspects of Nanoparticles, from their preparation to their practical application. The chapters present different ways to synthesize nanometer particles, as well as their functionalization and other surface treatments to allow them to a practical use. Several industrial applications of such nanometer particles are also covered in this Handbook. It is a complete reference for those working with Nanotechnology at the lab level, from students to professionals.
This book provides information to the state of art of research in nanotechnology and nano medicine and risks of nano technology. It covers an interdisciplinary and very wide scope of the latest fundamental research status and industrial applications of nano technologies ranging from nano physics, nano chemistry to biotechnology and toxicology. It provides information to last legislation of nano usage and potential social impact too. The book contains also a reference list of major European research centers and associated universities offering licences and master of nano matter. For clarity and attractivity, the book has many illustrations and specific inserts to complete the understanding of the scientific texts.
The Springer Handbook of Nanomaterials collects description and data of materials which have dimensions on the nanoscale. The description of nanomaterials follows the interplay of structure, properties, processing and applications mainly in their solid phase. The chapters were arranged according to the classical materials-science classifications: carbon materials, metals, ceramics, composites, and biomaterials. For each part, materials structures represent different dimensionality; zero-dimensional clusters, nanoparticles and quantum dots, one-dimensional nanowires and nanotubes, and two-dimensional thin films and surfaces. Combinations cover for instance nanostructured and hybrid materials. Almost 100 leading scientists from academia and the industry were selected to write the 32 chapters and collect the physical, chemical and mechanical data.